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Letter 

Comments  on a partial d i f ferent ia l  equat ion model of the temperature  
of a g rowing  spherul i te 

Dear Sir 
In a recent article, Huang et al. l presented a 

mathematical model of the evolution of the temperature 
distribution in the vicinity of an isolated spherulite 
undergoing linear radial growth. There is an error, and 
there are some ambiguities, in their presentation. The 
purpose of this short note is to correct the error and to 
identify the ambiguities. 

I mean only to comment on the mathematics of this 
model. I mean neither to endorse nor to criticize the 
scientific underpinnnings of the model. 

POSING OF THE MATHEMATICAL PROBLEM 

Equations (6), (7), (8) and (9) of the paper constitute the 
authors' mathematical formulation of the model. These 
equations (I shall use the notation that was used in the 
paper, and I shall number the equations here as they are 
numbered in the paper) are: 

OT [dZT 2 0 T ]  dROT 
0--T = a [-~5-r2 -+ [R(t) + r] Orr + d---t- 0---~- (6) 

dR 
d---7 = V = constant (7) 

T(cx~, t) = Tc (8) 

OT Lfl 
~rr Ir=O- ~ (9) 

Since equations (6) and (7) are time-dependent, they 
ought to be supplemented with initial conditions. Thus, 
to specify the mathematical problem fully--to have a 
well posed problem--two more equations, of the form: 

T(r, O) = To(r ) 

R(O) = R o 

are needed. From the context of the paper, and from the 
computed results, I infer that To(r) - Tc and R 0 = 0 are 
the appropriate initial values. 

PROPOSED SOLUTION 

In the paper, it is stated that the function: 

-fir 1 T =  Tc +Lf l  R 2 [ ~ + r +  fleflREi(-fl(R (10) 

where 

Ei p/= [ e-Xdx 
jp x 

is a solution of equation (6). Presumably, the authors 
intended this to be a solution that also satisfied the 

boundary conditions that they specified. There are two 
problems. First, the authors did not intend the function 
given in equation (10) to be a solution of equation (6 2. 
Rather, they intended it to be a solution of the equation': 

[dZT 2 ~r' 1 OT dR OT 
0 = a [--~r 2 + [R(t) + r] + d--t- 0--r- (6') 

They refer to a solution of this equation--presumably a 
solution that satisfies the boundary and initial condi- 
t i ons - a s  a quasi-stationary approximation to the 
solution of the original problem z. Secondly, the 
function given in equation (10) is not a solution of 
equation (6), nor is it a solution of equation (6') for the 
quasi-stationary approximation, nor does it satisfy either 
of the boundary conditions given in equations (8) and (9). 
That this is so is easily established by performing the 
required differentiations and making the appropriate 
substitutions. 

THE CORRECT QUASI-STATIONARY 
APPROXIMATION 

The actual solution of equations (6'), (7), (8), (9) and the 
inital conditions is: 

LflR2 [ e-dr fle;~nEi(fl(R r))] (10') r=rc+  G LR+r + 

with R(t) = V. Here, we have used the definition of the 
function Ei (p) given in the paper. The notation used in 
connection with the exponential integral function and 
related functions varies, and this variation frequently 
causes confusion. In their standard reference, 'An Atlas 
of Functions '3, Spanier and Oldham define the expo- 
nemial integral differently, as: 

ex 
Ei(p) = - -dx  

x 

If the authors had used this definition, their solution, 
presented in equation (10), would be correct. The 
function that is presented in the paper as the 
exponential integral function is the second Schlomilch 
function 3 usually denoted E1 (p), which is related to the 
exponential integral, in the notation of Spanier and 
Oldham, by: 

E,(p) = fp~e-Xx dx = - j-oo f-p e~dxx = -E i ( -p )  

I repeated the computations presented in the paper, 
using the parameters given in the paper, and setting 
r = 0. The computations with the formula in equation 
(10), using the paper's definition of the exponential 
integral, reproduced the graphs in Figure 8 of the paper, 
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for PEO. They are plotted as solid curves in Figure 1. The 
computations with the formula in equation (10'), the 
actual quasi-stationary solution, using the paper's 
definition of the exponential integral, produced similar 
graphs for slow radial growth rates, but for the largest 
growth rate the difference reached a maximum of 35%. 
These are plotted as dotted curves in Figure 1. The 
graphs are shown in both linear-log and linear-linear 
scales. 

I also tried to repeat the computations for iPP that are 
presented in Figure 9 of the paper. The results are shown 
in Figure 2. Again, the graph produced by the correct 
formula, given in equation (10r), using the paper's 
definition of the exponential integral, are dotted curves. 
The graphs produced by the formula given in equation 
(10), using the paper's definition of the exponential 
integral, are solid curves. In this case, the two formulae 
produce more similar results, differing by at most 7% in 
the case of the most rapid growth rate. However, 
neither of these formulae yields the results that are 

present in Figure 9 of the paper, from which they differ 
by an order of magnitude. It appears that the authors 
used yet another formula to obtain the graphs in that 
figure. 

Readers should not infer, from the surprisingly good 
agreement of the two formulae for the cases presented in 
Figures 1 and 2, that the formula in equation (10) is in 
any way reliable. In general, the function represented by 
this formula is qualitatively and quantitatively wrong. 

VALIDITY OF THE QUASI-STATIONARY 
APPROXIMATION 

One must justify the use of quasi-stationary approxima- 
tion by showing that the time derivative on the left side of 
equation (6) is negligible. Sometimes it is, sometimes it is 
not. The applicability of the quasi-stationary approx- 
imation will depend on the parameter values, and on the 
accuracy that is required. 
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I shall not give a complete analysis of the quasi- 
stationary approximation. However, the basic issue is 
simple and is worth stating. I f  thermal diffusion is much 
faster than the growth rate of the spherulite, we might 
expect the temperature distribution around the spher- 
ulite at any time to approximate a steady-state tempera- 
ture distribution. In time t, heat diffuses a distance on the 
order of v/-at. In the same time, the spherulite grows 
radially by an amount V. If  the ratio of these two 
distances: 

is small--and what counts as small will be determined by 
the precision required for a particular application-- 
quasi-stationary approximation may apply. 

I solved the ini t ial-boundary value problem specified 
by equations (6), (7), (8), (9), T ( r , 0 ) =  Tc, and 
R(0) = 1 #m by a finite-difference method, for the 
cases considered in Figure 8 and Figure 9 of  the 
paper. (If R(0) = 0, equation (6) is singular, which is 
why I used a non-zero value; for our purposes, the 
differences in the solutions are negligible.) By succes- 
sively refining the finite-difference grid, I obtained 
solutions, which are plotted as solid curves in Figure 
3, that are more than sufficiently accurate for our 
purposes. The quasi-stationary approximations are also 
plotted, as dotted curves, in Figure 3. As our rough 
criterion suggests, the accuracy of  the quasi-stationary 
approximation decreases with increasing time and with 
increasing growth rate. For  PEO, the worst of the cases 
presented in the paper occurs at t = 250s, 
V = 6.668 ms - l ,  where the quasi-stationary approxima- 
tion is off by 21%. For iPP, the worst of  the cases occurs 
at t = 10000 s, V = 0.24ms -1, where the quasi-station- 
ary approximation is off by 10%. 

present graphs of iPP spherulite radius as a function of 
time at four temperatures. In the figure caption, they 
indicate the growth velocities associated with each of the 
four cases. However, the growth velocities reported in 
the caption do not correspond to the slopes of the curves 
in the graph. For example, curve 4 indicates that the 
spherulite grew with linear radial velocity from a radius 
of 50 #m at 7000 s to a radius of 300 #m at 41 000 s, so the 
radial velocity is: 

300 - 50 250 
V 

41000 - 7000 - 3400----O -- """~'u'uu/~4/zms-1 

The authors report this velocity, in the caption, as 
V = 0.1255 #m s -1 . There are comparable discrepancies 
between the slopes of the other graphs and the reported 
velocities. 

CONCLUSION 

Readers who plan to use the model developed in the 
paper should establish, for the particular cases in which 
they are interested, whether the quasi-stationary approx- 
imation is valid before they apply it. If  they decide that 
this approximation is valid, they should use the correct 
formula, given above in equation (10~). 

My recommendation is that anyone interested in 
using this model simply solve the equations by a finite- 
difference method or a finite-element method. These 
are more accurate. And, given the speed of  the current 
generation of  computers and the sophistication and 
availability of  mathematical software, it is probably 
simpler to use these methods than it is to estimate the 
error introduced by the quasi-stationary approxima- 
tion. 

IPP DATA 

This observation is not related to the differential 
equation model. In Figure 6 of  the paper, the authors 
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